JT-NM TR-1001-1

System Environment and Device Behaviors For SMPTE ST 2110 Media Nodes in Engineered Networks - Networks, Registration and Connection Management
The PROBLEM to be SOLVED by TR-1001-1

• SMPTE 2110 describes the packet formats
• AMWA IS-04 provides a registry for organizing resources
• AMWA IS-05 describes the stream switching API
• Each of these also includes options and optional features, and sometimes incompatible choices are possible

• There are remaining details and behavior questions when building a system, and the industry benefits when these details are specified clearly and consistently
What is covered in TR-1001-1? (1 of 3)

• Use the Standards from SMPTE and AMWA
 – SMPTE ST 2110-10/20/21/30/31/40
 – AMWA NMOS IS-04, IS-05, BCP-002

• Use the Standards in a specific way
 – In some cases this TR constrains the standards

• How devices start-up and integrate into systems
 – This TR specifies some start-up behaviors and network services, so that device makers and system builders have a common expectation about the system
What is covered in TR-1001-1? (2 of 3)

• Network Services which must be present
 – DHCP on the Management and Media Networks
 – DNS including DNS Service Discovery (DNS-SD)
 – IS-04 (NMOS) Registration and Query Services
 – System Resource Service (system constants)
 – Precision Time Protocol (PTPv2) as in SMPTE 2059
 – Unicast Routing between Management and Media Networks
What is covered in TR-1001-1? (3 of 3)

• System Startup Behaviors for Media Nodes
 – How nodes find the System Resource (via DNS-SD)
 – How nodes find the IS-04 Registry (via DNS-SD)
 – How nodes suggest grouping using BCP-002-01
 – How to identify if the current configuration is valid, out-of-date, or out-of-place (via System Resource)
 – How senders get their TX information (via IS-05)
Network Services – DHCP and DNS

• DHCP for Management and Media Networks
 – Eliminates the need to set host IP addresses by hand
 – Avoids errors and duplications
 – Tells the nodes how to find the DNS servers
 – Can securely register the node’s hostnames into DNS

• DNS (Domain Names Service)
 – Nodes use DNS Service Discovery (DNS-SD) to find the IS-04 registration service and the system resource
 – Finding the System Resource and Registration Service are vital to system startup and system resiliency
Network Architecture Flexibility

- **Unicast Routing between Management and Media Networks**
 - Enables a mix of devices, some with management on the media networks, and others with separate management networks

- **Separate Subnets for Main and Protect Media Nets**

- **Specific “Network Hygiene” rules**
 - Every interface has unique MAC
 - Every interface has its own Host IP
 - Must support Echo-Request (ping)
Network Services
– System, NMOS, and PTP

- System Resource Service (provides global system constants)
 - Includes the PTP domain number and other PTP constants
 - Includes the registry timeout settings
 - Avoids needing to configure these by hand for every device in the system

- IS-04 (NMOS) Registration and Query Services
 - Nodes find the Registration Service using DNS-SD (not MDNS)
 - Nodes must register into the IS-04 Registry
 - Nodes should use the BCP-002 “grouphint” to signal natural groupings
 - Controllers look in the IS-04 Registry to find the nodes
 - Nodes update the Registry to signal switching events and other changes

- Precision Time Protocol (PTP)
 - as required by SMPTE ST 2110
System Startup Behaviors

- How nodes find the System Resource
 - Look up "_nmos-system._tcp" using DNS Service Discovery (DNS-SD)

- How nodes find the IS-04 Registration Service
 - Look up "_nmos-registration._tcp" using DNS Service Discovery (DNS-SD)

- How nodes identify if their current config is valid, or out-of-date, or out-of-place
 - Check the stored "system-ID" against the current system resource (to figure out if this is a new system and the configuration is invalid)
 - Check the time of the last saved configuration against the current system resource version timestamp (in case the node spent a long time in storage)
System Startup Behaviors

• How senders get their transmit configuration
 – If the config is current and from the same system ID, use the settings you have stored and start up
 – If the config is out of date or it’s a new system:
 • Mute the transmitters
 • Disconnect the receivers
 • Wait for instructions

• Nodes shall support TX configuration via IS-05
 – A controller will configure new nodes
Industry Benefits of TR-1001-1

• Add New Media Nodes to a System Easily
 – DHCP (automatically) provides network addresses
 – DNS-SD (automatically) discloses the services
 – Devices follow specified configuration start-up behaviors
 – IS-04 registration and IS-05 controls integrate the system

• Gives Users a uniform set of requirements language
 – TR-1001-1 should be referred to in RFI, RFP, RFQ
 – Eliminates customers needing to create their own unique requirements documents covering these system basics

• Gives Vendors a consistent set of requirements to develop against when making IP Media System products
JT-NM TR-1001-1 Demo Participants
A Special Thanks to

Diversified

For System Integration Services